A Presentation for

Advanced Turbine Systems Annual Program Review

Kevin D. Best CEO RealEnergy, Inc. 300 Capitol Mall, Suite 120 Sacramento, California 95814 916 325-2500 x109 kbest@realenergy.com

Table of Contents

RealEnergy	Section 1
Cost Reductions	Section 2
The Technologies	Section 3
The Projects	Section 4
Energy Information System	Section 5
Conclusion	Section 6

RealEnergy provides a distribution channel for environmentally clean energy technologies.

Our mission is to build, own and operate private energy infrastructure to provide power service alternatives including low cost, high reliability, high quality, 'clean and green' energy

for today's power intensive users.

RealEnergy will earn portfolio as the real estate owner's provider

Section 1

RealEnergy

A Distribution Channel

Commercial Real Estate's Energy Provider

- Convergence:
 - Deregulation
 - New generation technologies
 - Grid uncertainty
- RealEnergy's existing client/partners own over 290 million sf of real estate
- North American commercial real estate market:
 - 20 billion square feet of space
 - \$50 billion in annual retail energy purchases
- RealEnergy Strategic Distribution Model:
 - Creating energy demand through strategic client/partners
 - Creating technology and supply certainty through strategic investments
 - Delivering high efficiency and value by integrating appropriate technologies
 - Dominating the market with fast growth and long term contracts

Key Real Estate Shareholders

	Property	Geographic		Real Estate
Company Affiliation	Type [2]	Focus	Investor	Owned (S.F.)
AEW Capital	Mixed	National	Principals	35,000,000
ARDEN Realty	Office	S. California	ARDEN	22,000,000
Berkshire Development	Industrial/Retail	Northest	Owner	4,500,000
CharlesBank Capital	Mixed	National	Principals	6,500,000
DIVCOWest	Office	California	Principals	7,000,000
Elkor Realty	MF /Hospitality	West /Midwest	t Principals	4,700,000
Ezralow Holdings	MF/Retail	West	Principals	5,100,000
Layton Belling & Assoc.	Office	West	Principals	4,200,000
Leggat McCall	Mixed	Northest	Leggat McCall	8,000,000
Lubert-Adler	Mixed	National	Principal	15,000,000
MacFarland Partners	Retail	West	Principal	5,000,000
Opportunity Fund (I-Bank)	Mixed	National	Principal	4,500,000
Opus Development	Mixed	National	Principal	50,000,000
R & B Realty	Multi-Family	National	Principal	10,000,000
Spaulding & Slye	Mixed	Northest	Principals	11,000,000
Walton Street Advisors	Mixed	National	Principals	100,000,000
W.E. Simon & Sons	Mixed	National	Principals	5,500,000
Total				298,000,000

In addition to our current investors,
RealEnergy principals have long term
successful relationships that span the
entire breadth of the Commercial
Real Estate markets including:
US Pensions
REITS

Investment Advisors
Insurance Companies

Estimated Energy Consumption Estimated Energy Consumption MWh	\$ 745,000,000 5,960,000	2.50 psf 20.00 Watts per S.F.
Est. GenerationRequired for Above (Mw) RealEnergy Proj. Distr. Generation(Mw) [1]	1,361 476	50% Load Factor 35% of total energy use

Shareholders / Board Members

Shareholders / Board Members

Investor	Sector	Background
Advisory Board		
Robert C. Accomando, P.E	Real Estate	Arden Realty
Dean Adler	Real Estate	Lubert-Adler, Principal
Joseph Azrack	Real Estate	AEW Capital, CIO
William Chadwick	Real Estate	Chadwick, Saylor, Founder
Chip Douglas	Real Estate	CharlesBank Capital Partners, Principal
Michael Dumke	Real Estate	DIVCO W est, Principal
John Dunning	Venture Capital	Cross-Fire Ventures, Principal
Steve Layton	Real Estate	Founder, Layton-Belling & Associates
MalcolmLewis	Energy	CTG, Inc. (Mechanical Engineering Firm), Owner
Amory Lovins	Energy	Rocky Mountain Institute (RMI), Founder
Victor MacFarland	Real Estate	MacFarland Partners, Founder
John Montenaro	Energy	Power Plant Developer
Board of Directors		
Kevin Best	Energy	RealEnergy, Founder; Genesis Energy, Founder
Bill Browning	Real Estate / Energy	Rocky Mountain Institute, Director
Daniel Cashdan	Real Estate	RealEnergy, Founder; Chadwick, Saylor, Managing Direct
Steven Greenberg	Energy	RealEnergy, Founder; P.G. & E; Henwood Energy Service
Stuart Shiff	Real Estate	DIVCO W est Properties, Principal
Paul Slye	Real Estate	RealEnergy, Founder; AEW Capital Management; Chatha

RealEnergy has already brought together key members of the real estate community, and significant members of the energy sector.

RealEnergy will build on this valuable base of investors / advisors.

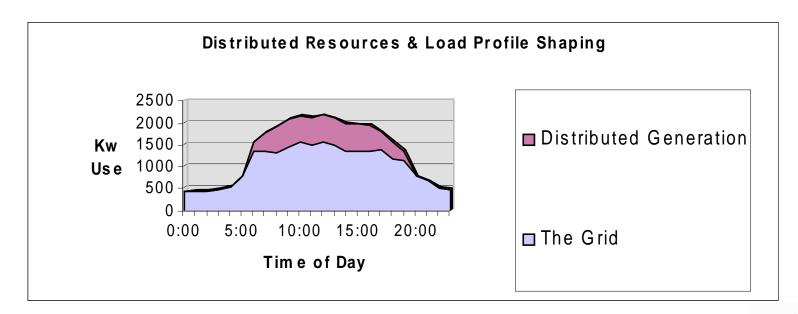
PowerPark / PowerTower Three Step Process

Phase I - Green/Brown Commodity Power Indexed to Retail Price

- Install generating assets to produce approximately 30% of facility peak demand
 - Provide site owner financial incentive
 - Improve facility load profile for future commodity contract
 - Prepare to monetize environmental and grid benefits

Phase II - Power Reliability Services

- Install additional generating assets to produce over 100% of facility peak demand
 - Charge site owner premium for higher reliability
 - Owner creates value for occupant or tenants, captures new revenue or billing stream
 - Prepare to dispatch excess capacity based on market signals


Phase III - Power Quality Services

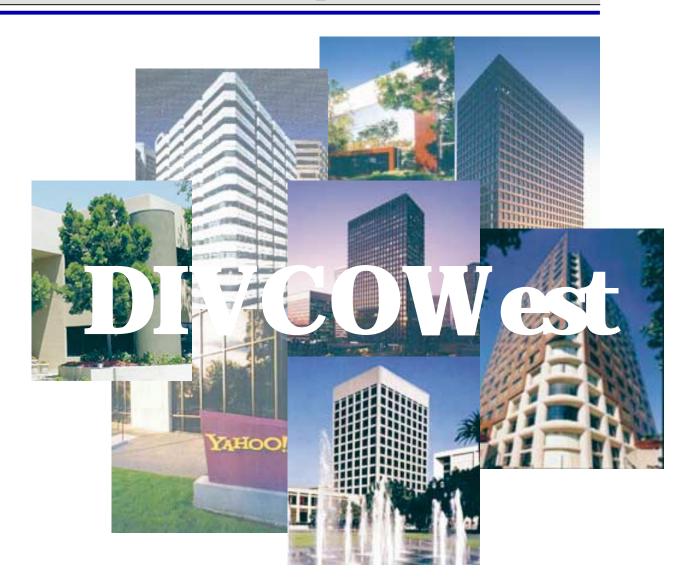
- Install energy storage and conditioning assets
 - Charge site owner premium for higher power quality
 - Owner creates value for occupant or tenants, captures new revenue or billing stream
 - Owner achieves marketing /asset positioning benefits
 - Up to 99.9999% reliability

Load Profile - On Site Generation's Impact

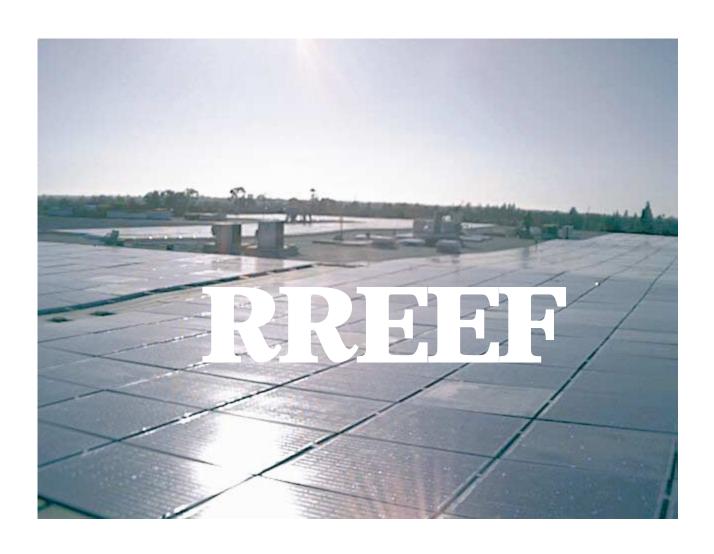
RealEnergy's Technologies Create Value:

- Increased revenue/lower cost for the site owner
- Improved load shape for commodity purchasing
- Infrastructure in place for Phase II or III

RealEnergy

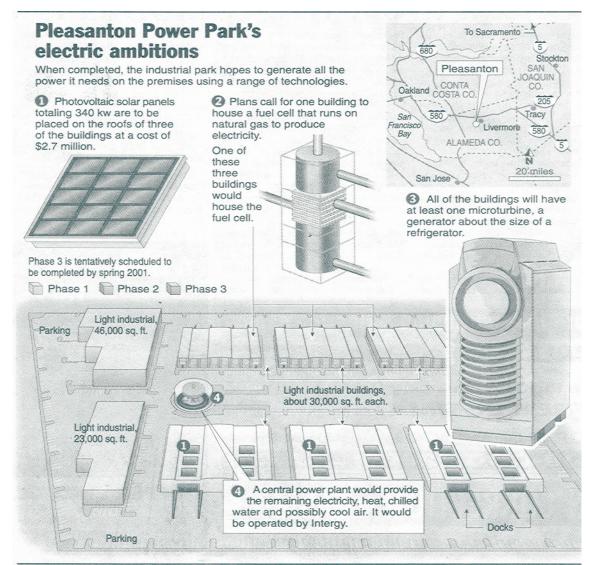

Clients - ARDEN Realty

Clients - Layton-Belling & Associates



Clients - DIVCOWest Properties

Clients - RREEF


Clients - Pleasanton PowerPark

PleasantonPowerPark

Source: Intergy

Bee graphic/Sean McDade

PleasantonPowerPark

DER Technologies for PPP

Generation Resources (kilowatts)

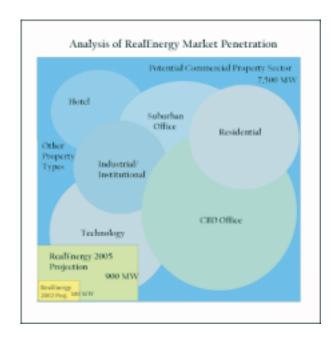
- 1. 340 kW Photovoltaics (blend of renewable to promote environmental stewardship)
- 2. Microturbines (several small gas turbines distributed throughout the PowerPark)
- 3. Fuel Cells small, medium and large fuel cell technologies
- 4. Combined Heat/Power/Chilled Water (CHPCW) (district gas cooling)
- 5. Simple Cycle Turbines (45 MW local area reliability station)
- 6. Grid connected electrical service

Storage and Demand Side Resources (negawatts)

- 1. 100kWh modular energy storage (environmentally benign advanced storage devices)
- 2. Thermal Energy Storage 800,000 gallon water storage
- 2. Direct Current Lighting (more efficient lighting from DC sources)
- 3. Variable Speed Motors/Drives (significantly lower energy use)
- 4. Enterprise Dispatch/Control (web-enabled to manage power production/load)

Technologies Under Review

- 1. Chilled water production night sky radiation
- 2. Rotating storage
- 3. High temperature solar thermal-electric
- 4. Hydrogen generation off-peak storage

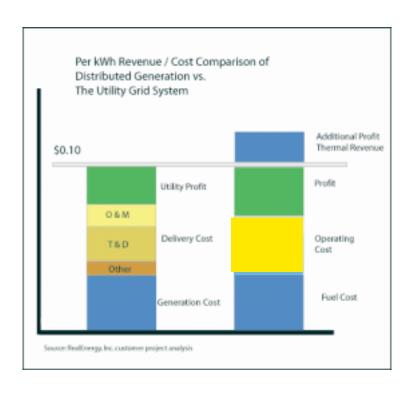


PleasantonPowerPark

Partial List of Committed Stakeholders

- •RealEnergy Energy Developer
- •Panattoni Development Building EPC Contractor
- •DTE Energy (Detroit Edison) PV Lessor
- •California Energy Commission \$1,000,000 Renewable Buydown
- •Department of Energy NREL
- •BP/Solarex Solar Panel Manufacturer
- •AstroPower Solar Panel Manufacturer
- •PowerLight Corporation PV System EPC Contractor
- •Nextek, Inc. DC Power Technologies

Projected Market Penetration

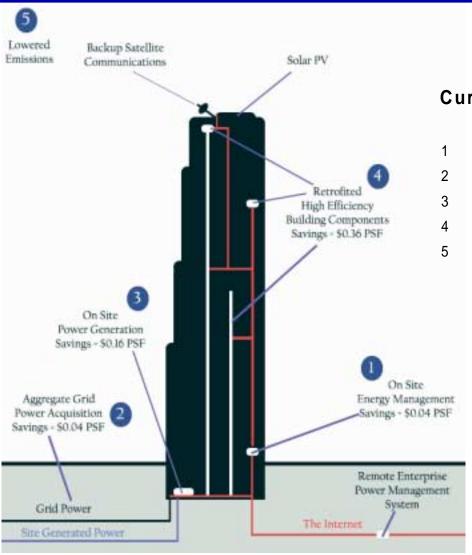


RealEnergy's Commercial DG Market Penetration

- Current Clients 500 MW demand (Phase I)
- 2001 Projection .5% of commercial DG market
- 2002 Projection 2% of commercial DG market
- 2005 Projection 12% of commercial DG market

RealEnergy's Economic Model

RealEnergy's Economic Model


- RealEnergy designs owns and operates generators in commercial properties owned by our customers.
- RealEnergy competes with delivered price of electricity
 - Avoided transmission & delivery cost
 - Improving micro generation efficiency
 - Cogeneration creates additional economic advantage over grid power
- Potential for Premium Power upgrade with increased margin for RealEnergy (and customer)

Section 2

Cost Reductions

Energy Cost Reductions - SF/YR

Current Energy Costs/SF/YR: \$2.50

Reductions:

On Site Energy Management \$ 0.04
Aggregated Grid Power \$ 0.04
On Site Power Generation \$ 0.16
Efficiency Retrofits \$ 0.36
Emissions Credits \$ TOTAL \$ 0.60

Section 3

The Technologies

Distributed Energy Resources - Now

- Internet monitoring & control
- Economically competitive new technology, net metering & peak shaving reduce costs
- Better power quality
- Dependability of distributed sources & technologies
- Efficient un-interruptible power supply
- Energy storage
- Small & scalable dispatchable systems
- Low emissions

Distributed Generation Technology Today

		Installed	Installed	•	peration	Fuel Cost			Annual	Est. Revenue	Single Unit	Annual	Total
Equipment	Output	Cost /kW	Cost /kW		Maint.	per kWh at		Total Operating	Gen. Capacity	@ \$0.11	Installed Cost	Revenue in	Operating
Туре	kW	Non CoGen	CoGen	pe	er kWh	\$4.00/MMBtu		Cost per kWh	kWh	per kWh[1]	Co-Gen	[6]	Cost
INTERNA L COMBUST	ON ENGINE	Ξ											
CAT G-3306TA	150	1250	1850	\$	0.0150	\$ 0.0	55	\$ 0.070	468,000	51,480	\$277,500	\$113,256	\$32,76
CAT G-3412TA	290	1250	1850	s	0.0150	\$ 0.0	55	\$ 0.070	904,800				
Daewoo 220	220	704	1100	\$	0.0150				686,400		\$140,800		
Electryon 6M	No Specifi	ications at this	time.										
1			\$	0.0150									
Jenbacher JMS 316	800	750	1250	\$	0.0150								
Jenbacher JMS 320	1,000	750	1250	\$	0.0150								
FUEL CELL													
PLUGPower [2]	7	_	2700	s	0.0075	s 0.0	50	s 0.058	21,840	2.402	\$18,900	\$5,285	\$1,2
Ballard P2-D	250	_	4500	-	-	-		-	-	-	-	-	-
ONSI [3]	200	-	4500	\$	0.0050	\$ 0.0	45	\$ 0.050	624,000	68,640	\$900,000	\$151,008	\$31,2
Fuel Cell Energy [4]	250	-	4500	\$	0.0050	\$ 0.0	27	\$ 0.028	780,000	85,800	\$1,125,000	\$188,760	\$21,9
Siemens Hybrid [2]	250	-	4500	\$	0.0075	\$ 0.0	47	\$ 0.055	780,000	85,800	\$1,125,000	\$188,760	\$42,5
MICRO TURBINE													
Capstone 330	28	1250	1800	s	0.0050	6 00	58	\$ 0.063	87,360	9,610	\$50,400	\$21,141	\$5,5
Capstone 660	57	1000		S	0.0050		55		177,840	19,562	\$82,650	\$43,037	\$10,6
Ingersol Rand				Ų	0.000	0.0		0.000	177,010	10,002	QQ2,000	940,007	\$10,0
Eliott	No Specifications at this time No Specifications at this time												
Parallon 75					s 0.0	59							
Paragon 250 No Specifications at this time					-								
MINI TURBINE													
Solar Mercury 50	4,200	900	1050	s	0.0140	8 00	47	s 0.061	36,540,000	4,019,400	\$6,400,000	\$8,842,680	\$2,228.9
Kawasaki GPB-15X	1,400	1500		S	0.0140		58		12,180,000	1,339,800	\$2,100,000	\$2,947,560	\$876,9
GEPGT2	2,000	1225		s	0.0150		62		17,400,000	1,914,000	\$2,900,000	\$4,210,800	\$1,339,8
GEPGT10B	10,800	747		s	0.0075		48		93,960,000	1,914,000	\$6,800,000	01,210,000	Q1,000,0
Pratt Whitney ST-18	1,961	1500		ŝ	0.0014		57		17,060,700	1,876,677	44,444,000		
Pratt Whitney ST-30	3,340	1450		Š	0.0014		55		29,058,000	3,196,380			
Pratt Whitney ST-40	4,039	900		s	0.0013		50		35,139,300	3,865,323			
J	4,000	300	, 1175	Ų	0.0013	Ų 0.0		0.009	3,13,30	3,000,000			
SOLARCELL													
BP/Solar [5]	100	6000		\$	-	\$ -		\$ -	312,000	34,320	\$600,000	\$75,504	:
Seimens [5]	100	6000		\$	-	S -		\$ -	312,000	34,320	\$600,000	\$75,504	;
Other [5]	100	6000	N/A	\$	-	\$ -		\$ -	312,000	34,320	\$600,000	\$75,504	:

Notes: [1] - Projected run cycle of 3,160 hours per year (12 hours per day, 260 days), actual utility rates and the rates at which RealEnergy will charge may vary. [2] - These technologies are currently under development and will soon be commercially available. [3] - Price includes rebate. [4] - Technologies in early development, no data available. The above estimates are meant to describe the general operating characteristics, in most cases, these are preliminary projections. [5] - Estimated Cost & performance. Solar subject to subsidies & grants to reduce cost. RealEnergy is currently engaged in a detailed underwriting of all of these technologies. [6] - Thermal revenue based on avoided cost at \$0.06 per therm.

Manufacturers – Astro Power

Astro Power

- California based manufacturer of solar panels for flat and vertical mounting
- Available in any several sizes and configurations
- California status creates additional incentives

Manufacturers – Fuel Cell Energy

- Fuel Cell Energy
 - Manufactures fuel cells from 250 kW to over 2 MW
 - Fuel Cell Energy's units operate at higher temperatures than traditional PEM Fuel Cells
 - Fuel Cell Energy has units in operation in Connecticut and California
 - RealEnergy will target Fuel Cell Energy fuel cells for on-site co-generation only in larger applications
 - RealEnergy's co-generation fuel cell units will provide hot water, heat and/or cooling to our client's buildings
 - RealEnergy has set realistic implementation time-frames for the installation of fuel cells, starting in the Summer of 2001

Manufacturers – Plug Power

PLUGPower

- Manufactures a 7 kW fuel cell
- PLUGPower has targeted the residential market as well as commercial
- Using natural gas, PLUGPower's generators produce negligible levels of emissions
- RealEnergy will target PLUGPower fuel cells for on-site co-generation only
- RealEnergy's co-generation Plug Power units will provide hot water, heat and/or cooling to our client's buildings

Manufacturers – Alliance Power

- Alliance Power
 - Exclusive manufacturer of Kawasaki 1.4 MW and GE 10 MW units with Catalytica XONON technology
 - Only near zero emissions units on the market today, with no toxic chemicals

Kawasaki 1.4

Manufacturers – Capstone Turbines

- Capstone Turbines
 - Manufactures a 30 kW and 60kW stationary generator
 - Recently raised capital through an initial public offering
 - First production unit sold in 1998
 - RealEnergy will use the Capstone 330 and 660 units for:
 - On-site co-generation
 - On-site electric only peak shaving
 - RealEnergy's co-generation Capstone units will provide hot water, heat and/or cooling to our client's buildings

Manufacturers - HESS MicroGen

HESS MicroGen

- A division of Amerada HESS Oil, a New York based independent energy company
- Currently offer two generation systems
 - 100 kW built on a domestic short block
 - 200 kW built in a Daewoo generator
- System utilizes the following innovations:
 - Chilled intake to increase output
 - High rise intake for improved efficiency
 - Automation system which controls unit and chiller on site and remotely

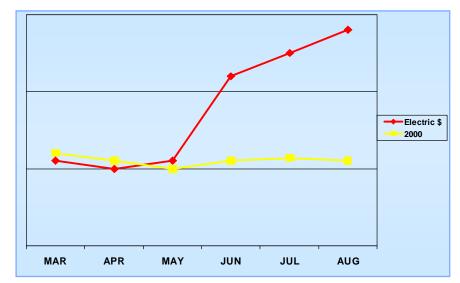
Section 4

The Projects

PROJECT - 1900/1901 Avenue of the Stars

DivcoWEST & Distributed Generation

- Two vintage full service office towers totaling over 1.1MM SF
- Utility electric, thermal energy from Sempra central plant
- Three (3) 200kW Natural Gas Fired Internal Combustion Engines in each building
- Heat Recovery Unit (each building)
- 175 TON absorption chiller (each building)
- Cooling Tower (each building)
- 3,000 annual kW hours (38%)


Project – Imperial Bank Tower

Arden - Distributed Generation

- EiS wiring complete Silicon Energy
- Energy reductions of 19% in six months
- 250% <u>increase</u> in electrical costs over three months (June August 2000)
- Vintage full service office tower totaling over 540M SF
- SDG&E electric (single 12 kv); Two 600 ton and one 165 ton chiller and towers
- Scheduled \$1.3MM HVAC retrofit 2001
- Three (3) 200kW Natural Gas Fired Internal Combustion Engines
- Heat Recovery Unit
- 450 TON absorption chiller
- Cooling Tower
- 4,032 annual kW hours (46%)

PROJECTS – 19000 Macarthur & 1500 Quail

LBA – Distributed Generation

- EiS wiring systems installed(
- (10) 60 kW Capstone Microturbines each
- Two vintage full service office towers
- 450 ton absorption chiller
- Cooling Towers
- Over 3,000 annual kW hours (>38%)

Section 5

Energy Information Systems

Energy Information Systems (EIS)

Portfolio Energy Management Services

RealEnergy uses web based technologies to perform:


- Billing (Customer and Tenant)
- Commodity purchasing
- Distributed Resources monitoring and control
- Energy optimization
- Portfolio energy information services (energy data management)
- Rate and Tariff Audit and Analysis

Energy Information Systems (EIS)

Typical Building EIS Wiring Diagram

Section 6

Conclusion

Conclusion - Barriers

- **Interconnection** Not a major issue for RealEnergy systems sized for on-site consumption of electricity. Interconnection for two way power flow very difficult still.
- Standby Charges Created after PURPA for 49 MW plants that could impact T&D system.

Demand charges should apply to load and DG equally. SDG&E suggests current limiting devices sized to the DG production. This eliminates our use of the grid during off-peak. Utilities want more effective use of the grid, DG offers this *and* grid relief during peak periods. Forcing us to island loads under-utilizes all of our assets.

• **Gas & Electric Utilities** – Monopoly power should not be used to force customer generation decisions. A 'firewall' between these gas and electric entities should eliminate the manipulation of gas access to result in electric utility benefit.

We serve the same clients. Let's give the customer true open access choice, recognizing the benefits of DG to the customer, the utility and the environment.

Conclusion - Milestones

- Since its inception, RealEnergy has achieved the following milestones:
 - · Creation of captive client base with over 290 million S.F. of property
 - Execution of several exclusive contracts with technology suppliers
 - Execution of contracts with clients to implement distributed generation systems
 - Implementation of Energy Information System
 - Negotiation of Utility Interconnection Agreements
 - Establishment of market presence first mover advantage
 - Project mobilization
 - Turned a timely idea into reality

